Selecionar Exercício
Um automóvel encontrava-se estacionado no cimo de uma rampa, como se representa na Figura 1 (que não está à escala), quando, acidentalmente, se destravou. Deslizou ao longo da rampa, com aceleração constante, até colidir com um motociclo que se encontrava parado.
Considere que, no movimento considerado, a resultante das forças dissipativas que atuaram no automóvel não foi desprezável, e considere que o automóvel pode ser representado pelo seu centro de massa (modelo da partícula material).

O automóvel, de massa $1,2 \times 10^{3} \mathrm{~kg}$, deslizou $80 \mathrm{~m}$ ao longo da rampa até colidir com o motociclo. A análise do acidente permitiu determinar que o módulo da velocidade do automóvel no instante da colisão era $7,5 \mathrm{~m} \mathrm{~s}^{-1}$.
Considere que o desnível entre as posições inicial e final do automóvel era 7,0 m.
Questão:
Determine o tempo que o automóvel demorou a percorrer aquela distância sobre a rampa, a partir de um esboço do gráfico do módulo da velocidade do automóvel em função do tempo (apresente esse esboço).
Mostre como chegou ao valor solicitado.
Comentários
Mas se há forças dissipativas a atuar no automóvel durante a descida porque é que se pode considerar que o movimento é uniformemente acelerado?
Para responder ao comentário, por favor inicia sessão ou cria uma conta.
Mas a existência de forças dissipativas não impede que o movimento seja uniformemente acelerado.
Para responder ao comentário, por favor inicia sessão ou cria uma conta.
Para comentar, por favor inicia sessão ou cria uma conta.